ارزیابی برنامهریزی نگهداری و تعمیرات خودپردازهای بانکی با استفاده از الگوریتم یادگیری عمیق
کلمات کلیدی:
برنامهریزی نگهداری , خودپردازهای بانکی , یادگیری عمیقچکیده
هدف این پژوهش ارائه مدلی هوشمند برای پیشبینی خرابی و برنامهریزی بهینه نگهداری و تعمیرات خودپردازهای بانکی با بهرهگیری از الگوریتمهای یادگیری عمیق و تحلیل دادههای عملکردی است. این پژوهش از روش فراترکیب (Meta-Synthesis) برای شناسایی و تحلیل عوامل مؤثر بر خرابی خودپردازها استفاده کرده است. دادهها از مطالعات پیشین استخراج و سپس در قالب مفاهیم مشابه دستهبندی شدند. برای ارزیابی کیفیت کدگذاری از شاخص کاپا و برای تعیین اهمیت مقولهها از روش آنتروپی شانون استفاده گردید. همچنین در بخش تجربی، مدل شبکه عصبی عمیق شامل دو لایه مخفی با ورودیهایی از دادههای تراکنش، دما، ولتاژ، وضعیت حسگرها، و تاریخچه سرویس دستگاه طراحی شد. معیارهای ارزیابی مدل شامل دقت، میانگین مربعات خطا (MSE) و ضریب تعیین (R²) بودند. نتایج نشان داد که متغیرهایی مانند حجم نقدی برداشتشده، دمای داخلی دستگاه، تراکم جمعیت منطقه و نوع سرویس اخیر از بالاترین اهمیت در پیشبینی خرابی برخوردارند. شاخص کاپا برابر با 0.82 بیانگر توافق عالی بین کدگذاران بود. مدل پیشنهادی توانست با دقت بالا خرابیهای احتمالی را در بازه زمانی مشخص پیشبینی کند. تحلیل آنتروپی شانون نشان داد که مقولههای عملکرد و تراکنش، سختافزار و سنسورها، و رویدادهای نگهداری بیشترین وزن اطلاعاتی را دارند. استفاده از الگوریتمهای یادگیری عمیق در نگهداری پیشبینانه خودپردازها میتواند موجب کاهش هزینههای تعمیرات اضطراری، افزایش قابلیت اطمینان سیستم، و بهبود رضایت مشتریان گردد. نتایج پژوهش نشان میدهد که مدل ترکیبی CNN–LSTM میتواند بهطور مؤثر در سامانههای پایش هوشمند خودپرداز و برنامهریزی تعمیرات به کار گرفته شود.
دانلودها
مراجع
Alarfaj, F. K., Malik, I., Khan, H. U., Almusallam, N., Ramzan, M., & Ahmed, M. (2022). Credit card fraud detection using state-of-the-art machine learning and deep learning algorithms. IEEE Access, 10, 39700-39715. https://doi.org/10.1109/ACCESS.2022.3166891
Ali, M., & Usmani, M. (2020). The Effect of ATM Services on Customer Loyalty in the Middle East. Middle East Journal of Business and Finance, 7, 200-260. https://www.bmfopen.com/index.php/bmfopen/article/download/175/138/914
Alizadeh, H., & Khalili Asr, G. (2023). Evaluation of the online shopping experience based on the behavioral characteristics of customers of art products. Scientific Journal of New Research Approaches in Management and Accounting, 6(23), 1109-1123. https://doi.org/10.1186/s40510-047-1024-2
Alizadeh Hamid, H., & Larijani, M. (2018). Investigating the impact of currency risk on Bank Mellat's performance through the mediating role of financial intelligence. Scientific Journal of New Research Approaches in Management and Accounting, 3(8), 32-47. https://maildc1519217340.mihandns.com/index.php/ma/article/view/161
Amin, M., & Shams, K. (2020). Predicting ATM Failures Using Statistical and Machine Learning Techniques. Journal of Machine Learning and Financial Engineering, 7, 130-160.
Bagherighadikolaei, S., Ghousi, R., & Haeri, A. (2020). A Data Mining approach for forecasting failure root causes: A case study in an Automated Teller Machine (ATM) manufacturing company. Journal of Optimization in Industrial Engineering, 13(2), 101-121. https://sanad.iau.ir/fa/Journal/jie/AuthorIndex/X
Baker, T., & Lee, C. (2018). Consumer Experience with ATM Services in U.S. Banks. Journal of Consumer Research, 12, 90-140.
Bianchini Ciampoli, L., Gagliardi, V., D'Amico, F., Clementini, C., Latini, D., & Benedetto, A. (2022). Quality Assessment in Railway Ballast by Integration of NDT Methods and Remote Sensing Techniques: A Study Case in Salerno, Southern Italy. Copernicus Meetings. https://doi.org/10.5194/egusphere-egu22-2712
Binyam, B. (2022). Automated Teller Machine (ATM) Transaction Failure detection using Machine learning: The case of commercial Bank of Ethiopia (CBE).
Boldt, M., Thiele, A., & Schulz, K. (2022). Training data generation for machine learning using GPR images. Earth Resources and Environmental Remote Sensing/GIS Applications XIII, https://doi.org/10.1117/12.2635714
D'Aranno, P. J., Scifoni, S., & Marsella, M. (2023). SAR interferometry data exploitation for infrastructure monitoring using GIS application. Infrastructures, 8(5), 94. https://doi.org/10.3390/infrastructures8050094
Elseicy, A., Alonso-Díaz, A., Solla, M., Rasol, M., & Santos-Assunçao, S. (2022). Combined use of GPR and other NDTs for road pavement assessment: An overview. Remote Sensing, 14(17), 4336. https://doi.org/10.3390/rs14174336
Hasheminejad, S. M. H., & Reisjafari, Z. (2017). ATM management prediction using Artificial Intelligence techniques: A survey. Intelligent Decision Technologies, 11(3), 375-398. https://doi.org/10.3233/IDT-170302
Hassani, H., Huang, X., Silva, E., & Ghodsi, M. (2020). Deep learning and implementations in banking. Annals of Data Science, 7, 433-446. https://doi.org/10.1007/s40745-020-00300-1
Hu, L., Chen, J., Vaughan, J., Aramideh, S., Yang, H., Wang, K., Sudjianto, A., & Nair, V. N. (2021). Supervised machine learning techniques: An overview with applications to banking. International Statistical Review, 89(3), 573-604. https://doi.org/10.1111/insr.12448
Huang, J., Yang, X., Zhou, F., Li, X., Zhou, B., Lu, S., Ivashov, S., Giannakis, I., Kong, F., & Slob, E. (2023). A deep learning framework based on improved self-supervised learning for ground-penetrating radar tunnel lining inspection. Computer-Aided Civil and Infrastructure Engineering. https://doi.org/10.1111/mice.13042
Jain, R., & Kumar, S. (2019). ATM Machine Failure Prediction Using Time Series Analysis. International Journal of Computer Science and Engineering, 12, 50-75.
Johnson, P., & Wang, S. (2020). ATM Service Quality and Customer Satisfaction in UK Banks. Journal of Financial Services Research, 13, 130-180.
Kashani, H. F., Saeedi, A., Oke, J., & Ho, C. L. (2023). Stochastic analysis for estimating track geometry degradation rates based on GPR and LiDAR data. Construction and Building Materials, 369, 130591. https://doi.org/10.1016/j.conbuildmat.2023.130591
Khan, A., & Shah, I. (2020). Role of ATM Services in Enhancing Customer Satisfaction in Saudi Arabia. Middle East Journal of Business, 5, 100-150. https://www.bmfopen.com/index.php/bmfopen/article/download/175/138/914
Khan, S., & Abdullah, N. N. (2019). The effect of ATM service quality on customer's satisfaction and loyalty: an empirical analysis. Russian Journal of Agricultural and Socio-Economic Sciences, 89(5), 227-235. https://doi.org/10.18551/rjoas.2019-05.28
Khan, S., & Bhat, Z. (2021). The Role of ATM Services in Enhancing Customer Satisfaction in Pakistan's Banking Sector. Journal of Financial Services, 8, 75-120.
Kumar, S., & Gupta, A. (2020). Customer Satisfaction and ATM Usage in Indian Banking Sector. Asian Journal of Management and Economics, 5, 80-130. https://www.bmfopen.com/index.php/bmfopen/article/download/175/138/914
Lee, J., & Choi, D. (2022). Real-Time Failure Detection in ATM Networks Using Time Series Forecasting. International Journal of Networking and Systems, 12, 110-140. https://www.bmfopen.com/index.php/bmfopen/article/download/175/138/914
Lee, J., & Kim, H. (2019). Impact of ATM Service Quality on Customer Satisfaction in South Korean Banks. Asian Journal of Banking Research, 6, 80-130. https://www.bmfopen.com/index.php/bmfopen/article/download/175/138/914
Leo, M., Sharma, S., & Maddulety, K. (2019). Machine learning in banking risk management: A literature review. Risks, 7(1), 29. https://doi.org/10.3390/risks7010029
Malau, S. F., & Suardi, L. (2024). Automated Teller Machine (ATM) Durability Analysis Using Survival Analysis. MATHunesa: Jurnal Ilmiah Matematika, 12(3), 507-517. https://doi.org/10.26740/mathunesa.v12n3.p507-517
Martinez, C., & Ruiz, J. (2020). The Influence of ATM Service Quality on Customer Satisfaction: A Case Study of Banks in Spain. International Journal of Service Science, 11, 90-135. https://www.eajournals.org/wp-content/uploads/The-Influence-of-ATM-Service-Quality-on-Customer-Satisfaction-in-the-Banking-Sector-of-Nigeria.pdf
Mohan, R., & Kaur, G. (2021). Customer Satisfaction and ATM Usage in Sri Lankan Banks. Journal of International Financial Management, 9, 150-210.
Muneer, A., Ali, R. F., Alghamdi, A., Taib, S. M., Almaghthawi, A., & Ghaleb, E. A. (2022). Predicting customers churning in banking industry: A machine learning approach. Indonesian Journal of Electrical Engineering and Computer Science, 26(1), 539. https://doi.org/10.11591/ijeecs.v26.i1.pp539-549
Nguyen, H., & Nguyen, M. (2021). The Impact of ATM Accessibility and Service on Customer Satisfaction in Vietnam. Journal of Asian Business and Economic Studies, 12, 110-160. https://fbj.springeropen.com/articles/10.1186/s43093-024-00354-0
Patel, M., & Shah, R. (2019). A Study on Customer Satisfaction towards ATM Services in Indian Banks. Indian Journal of Banking Studies, 8, 110-160. https://www.bmfopen.com/index.php/bmfopen/article/download/175/138/914
Patel, R., & Sharma, S. (2022). Predicting ATM System Failures Using Predictive Analytics. Journal of Applied Computing and Informatics, 6, 120-160.
Pratiwi, P. S., Utomo, C. P., & Amartya, M. K. (2022). Machine Learning Model using Times Series Analytics for Prediction of ATM Transactions. 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), https://doi.org/10.1109/ISRITI56927.2022.10052900
Rachburee, N., Jantarat, S., & Punlumjeak, W. (2017). Time series analysis for fail spare part prediction: case of ATM maintenance. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(2-6), 49-52. https://www.academia.edu/78424898/Designing_Location_Aware_Active_Atm_Recommender_for_Banking_Service
Rasol, M., Pais, J. C., P'Erez-Gracia, V., Solla, M., Fernandes, F. M., Fontul, S., Ayala-Cabrera, D., Schmidt, F., & Assadollahi, H. (2022). GPR monitoring for road transport infrastructure: a systematic review and machine learning insights. Construction and Building Materials, 324, 126686. https://doi.org/10.1016/j.conbuildmat.2022.126686
Reddy, K. S., & Chandra, S. (2020). Impact of ATM Services on Customer Satisfaction in Indian Banks. Asian Journal of Banking and Finance, 6, 100-150. https://www.bmfopen.com/index.php/bmfopen/article/download/175/138/914
Rosati, R., Romeo, L., Vargas, V. M., Gutiérrez, P. A., Hervás-Martínez, C., Bianchini, L., Capriotti, A., Capparuccia, R., & Frontoni, E. (2022). Predictive maintenance of ATM machines by modelling remaining useful life with machine learning techniques. International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/978-3-031-18050-7_23
Rygus, M., Novellino, A., Hussain, E., Syafiudin, F., Andreas, H., & Meisina, C. (2023). A clustering approach for the analysis of InSAR time series: application to the Bandung Basin (Indonesia). Remote Sensing, 15(15), 3776. https://doi.org/10.3390/rs15153776
Tsiakos, C. A. D., & Chalkias, C. (2023). Use of machine learning and remote sensing techniques for shoreline monitoring: a review of recent literature. Applied Sciences, 13(5), 3268. https://doi.org/10.3390/app13053268
Vale, C., & Simoes, M. L. (2022). Prediction of railway track condition for preventive maintenance by using a data-driven approach. Infrastructures, 7(3), 34. https://doi.org/10.3390/infrastructures7030034
Wang, H., Jia, C., Ding, P., Feng, K., Yang, X., & Zhu, X. (2023). Analysis and prediction of regional land subsidence with InSAR technology and machine learning algorithm. KSCE Journal of Civil Engineering, 27(2), 782-793. https://doi.org/10.1007/s12205-022-1067-4
Wavetec. (2024). Common ATM Problems and Solutions: Enhancing ATM Reliability. https://www.wavetec.com/blog/banking/atm-problems-solutions/
Zhao, L., & Zhang, K. (2020). Customer Perception of ATM Services and Its Influence on Satisfaction in Chinese Banks. International Journal of Financial Services, 6, 60-110. https://www.bmfopen.com/index.php/bmfopen/article/download/175/138/914
دانلود
چاپ شده
ارسال
بازنگری
پذیرش
شماره
نوع مقاله
مجوز
حق نشر 2025 فرحناز صالحی تیرگانی (نویسنده); حسن مهرمنش; سید عبداله امین موسوی (نویسنده)

این پروژه تحت مجوز بین المللی Creative Commons Attribution-NonCommercial 4.0 می باشد.